A temperature-sensitive allele of Drosophila sesB reveals acute functions for the mitochondrial adenine nucleotide translocase in synaptic transmission and dynamin regulation.

نویسندگان

  • Richa Rikhy
  • Mani Ramaswami
  • K S Krishnan
چکیده

Rapidly reversible, temperature-sensitive (ts) paralytic mutants of Drosophila have been useful in delineating immediate in vivo functions of molecules involved in synaptic transmission. Here we report isolation and characterization of orangi (org), an enhancer of shibire (shi), a ts paralytic mutant in Drosophila dynamin. org is an allele of the stress sensitive B (sesB) locus that encodes a mitochondrial adenine nucleotide translocase (ANT) and results in a unique ts paralytic behavior that is accompanied by a complete loss of synaptic transmission in the visual system. sesB(org) reduces the restrictive temperature for all shi(ts) alleles tested except for shi(ts1). This characteristic allele-specific interaction of sesB(org) with shi is shared by abnormal wing discs (awd), a gene encoding nucleoside diphosphate kinase (NDK). sesB(org) shows independent synergistic interactions, an observation that is consistent with a shared pathway by which org and awd influence shi function. Genetic and electrophysiological analyses presented here, together with the observation that the sesB(org) mutation reduces biochemically assayed ANT activity, suggest a model in which a continuous mitochondrial ANT-dependent supply of ATP is required to sustain NDK-dependent activation of presynaptic dynamin during a normal range of synaptic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB

Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss ...

متن کامل

Evaluation of Porin Interaction with Adenine Nucleotide Translocase and Cyclophilin-D Proteins after Brain Ischemia and Reperfusion

Objective (s) Porin is a mitochondrial outer membrane channel, which usually functions as the pathway for the movement of various substances in and out of the mitochondria and is considered to be a component of the permeability transition (PT) pore complex that plays a role in the PT. We addressed the hypothesis that porin interacts with other mitochondrial proteins after ischemic injury. Mater...

متن کامل

stress sensitive B encodes an adenine nucleotide translocase in Drosophila melanogaster.

Adenine nucleotide translocases (ANT) are required for the exchange of ADP and ATP across the inner mitochondrial membrane. They are essential for life, and most eukaryotes have at least two different Ant genes. Only one gene had been described from Drosophila, and this had not been characterized genetically. We show that mutations in this gene correspond to the previously described loci, sesB ...

متن کامل

A mitochondrial-associated link between an effector caspase and autophagic flux

It has become evident that caspases function in nonapoptotic cellular processes in addition to the canonical role for caspases in apoptotic cell death. We recently demonstrated that the Drosophila effector caspase Dcp-1 localizes to the mitochondria and positively regulates starvation-induced autophagic flux during mid-oogenesis. Loss of Dcp-1 leads to elongation of the mitochondrial network, i...

متن کامل

Phenotypic rescue of a Drosophila model of mitochondrial ANT1 disease

A point mutation in the Drosophila gene that codes for the major adult isoform of adenine nuclear translocase (ANT) represents a model for human diseases that are associated with ANT insufficiency [stress-sensitive B(1) (sesB(1))]. We characterized the organismal, bioenergetic and molecular phenotype of sesB(1) flies then tested strategies to compensate the mutant phenotype. In addition to deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 165 3  شماره 

صفحات  -

تاریخ انتشار 2003